

A COMPARATIVE OVERVIEW

Universal Bioink™ **VS.** Traditional ECMs

COMPOSITION

Semi-synthetic, multi-component biopolymeric mixture with no growth factors or proteins in the gel solution.

Designed to replicate the ECM with high fidelity.

Often derived from mouse tumors, containing ~2,000 undefined compounds, including various growth factors.

CONSISTENCY

High batch-to-batch consistency ensures reliable results and minimizes experimental variability.

Suffer from batch-to-batch inconsistency due to undefined components.


EASE OF HANDLING

Liquid at warm temperatures, viscous when cooled. No ice buckets or overnight thawing needed. Activates with photocrosslinking for precise gelation.

Temperature-sensitive, requiring 4°C storage. Gelation triggered by fluctuations, making handling difficult and experiments prone to errors.

WANT TO LEARN MORE?

Explore Universal Bioink™

A COMPARATIVE OVERVIEW

Universal <u>Bi</u>oink™

VS.

Traditional ECMs

FLEXIBILITY AND CUSTOMIZATION

Lyophilized for easy reconstitution, allowing full customization with the cell medium of choice and your additional components.

Limited customization due to undefined composition.

BIOCOMPATABILITY

Mimics native ECM, providing mechanical support and biocompatibility for various cell types, promoting viability and growth.

Tumor-derived, making it difficult to distinguish biological effects from actual experimental outcomes.

EASE OF IMAGING

Transparent and optimized for imaging, minimizing interference and enhancing downstream analysis.

Undefined components cause noise, autofluorescence, and unreliable imaging results.

WANT TO LEARN MORE?

Explore Universal Bioink™