A SMARTER WAY TO BUILD BETTER MODELS

Flexible. Consistent. Effortless to Use.

UNIVERSAL BIOINK[™]

A semi-synthetic, multi-component bioink enabling high-fidelity tissue modeling for 3D cell culture and 3D bioprinting

CONTROLLED GELATION & PHOTOCROSSLINKING

Mix with LAP

Mix with cells

Irradiate with 405 nm UV light

Form hydrogel

STIFFNESS THAT MATCHES THE MODEL

Aligns with the mechanical stiffness of key soft tissues—breast, lung, ovarian, and prostate

UNIVERSAL BIOINK[™]

HIGH CELL VIABILITY. CONSISTENT RESULTS.

Tested with a Triple-Negative Breast Cancer cell line (MDA-MB-231) using a commercial extrusion bioprinter

Over 80% Cell Viability Maintained > 7 Days

Figure 1. Merged live/dead and Hoechst-stained images of MDA-MB-231 cells encapsulated in Universal Bioink[™] at Day 0 (A), Day 3 (B), and Day 7 (C). Live, dead, and Hoechst staining are represented in green, red, and blue, respectively.

Reproducible Across Batches

Figure 2. Cell viability, cell death, and metabolic activity in MDA-MB-231 cells printed via four different batches of Universal BioinkTM. Percentage of live cells measured via Live/ from Day 0 to Day 7.

UPGRADE FROM TRADITIONAL ECMs

Universal Bioink[™] delivers the control, consistency, and flexibility missing in traditional ECMs

Scan to see a full side-by-side comparison